Great Barrier Reef

Understanding temporal and spatial patterns of vulnerability under environmental impacts and change is central to the management of marine parks. Quantitative assessments of vulnerability, however, are one of the greatest challenges for management planning of coral reef ecosystems, including the Great Barrier Reef (GBR). One reason is the lack of a functional operational framework that can link environmental factors to vulnerability via physical, biological and ecological processes and their interactions.

Our recent four-year MTSRF project demonstrated significant export of larvae of the inshore coral trout species (Plectropomus maculatus) from existing no-take marine reserves (green zones) in the Keppel Island group on the Great Barrier Reef (GBR). In addition, no-take reserves were shown to make a disproportionately large contribution to recruitment in fished areas (blue zones) at this location.

Spatial zoning for multiple-use is the cornerstone of management for the Great Barrier Reef Marine Park (GBRMP). Multiple-use zoning was first implemented widely in the GBRMP in the late 1980s and this original zoning plan was in place until 2004, when the marine park was completely rezoned under the Representative Areas Program (RAP).

Implementation of networks of protected areas is the single most widely advocated action to protect marine biodiversity; the Great Barrier Reef Marine Park was one of the first and is one of the largest examples of such a network in the world. While some effects of marine protected areas can be seen rapidly, there are also long term changes that may develop over 1-2 decades. Surveys of the matched pairs of reefs during the term of the NERP Program will enable the longer-term effects of zoning to be assessed eight and ten years after the new zoning plan came into force.

Effective management of seabird populations on the Great Barrier Reef requires identifying the population-specific causes of current declines and their associated threatening processes. Without detailed information on foraging areas, resource use and links to oceanographic variation it is not possible to isolate or manage anthropogenic threats that occur outside of nesting colonies.

Sharks play an important role in marine ecosystems but are facing increasing pressure from fishing and other anthropogenic factors. Along the Queensland coast inshore waters play an important role as nursery areas for sharks. However, the same inshore waters are also most prone to fisheries exploitation and effects of freshwater discharge from coastal streams and rivers. This project will examine the importance of different types of inshore habitat (protected bay vs.

Large predatory fish are essential to a balanced marine ecosystem and also form the basis of important commercial and recreational fisheries. Sustainable fisheries and sustainable ecosystems require that management is able to achieve a balance between these divergent needs. The large size of many of these predators means that they often are highly mobile. This mobility complicates the management of these species, especially in regions such as the Great Barrier Reef, where there is a complex mosaic of open and closed areas.

Seagrass meadows are a vital habitat in tropical coastal ecosystems: they support biodiversity of estuarine, coastal and reef communities, including fisheries species, and they are a direct food source for obligate seagrass feeders such as dugongs. Seagrass meadows in the coastal zone also form a buffer between the catchment and the reef, trapping sediments and absorbing nutrients, with their high productivity rates facilitating rapid nutrient cycling.

The objective of this project is to assess how management of local stressors such as land runoff can help improve the resilience of coral reefs to global stressors (climate change) which are more difficult to manage.

Our current knowledge of diversity of the Great Barrier Reef and the mechanisms that determine it are minimal.  Based on a new statistical model of diversity, researchers will map the diversities of biota and environments of the Reef, and will relate biotic diversity to spatial, environmental and temporal drivers. These relationships will be interpreted in the context of risk, zoning and management.

Pages

Subscribe to RSS - Great Barrier Reef